Maths Ebook

Trigonometry Formulas Pdf: Chart, Table, Sheet and Functions: I welcome all of you in this new post. If you are looking for Trigonometry Table, then you will get it from here.

There are many websites from where you can easily donwnload Trigonometry Chart Pdf and can easily prepare for SSC CGL Exam, Class 10 exam also. You can also prepare for various other exams with the help of this table.

## Trigonometry Table

Trigonometry को हिंदी में त्रिकोणमिति कहते हैं जिससे सम्बन्धित पूरे सूत्र को नीचे दिए गए Button की सहायता से आसानी से प्राप्त कर सकते हैं। यह Trigonometry या कहो त्रिकोणमिति के सभी सूत्र यानी Formula को आप आसानी से PDF मे डाउनलोड कर सकते हैं।

Trigonometry Table को डाउनलोड करने के पश्चात आप घर बैठे गणित की तैयारी आसानी से कर सकते हैं। तो बिना विलम्ब किए इसे आज ही अपने मोबाईल या लैपटोप में Save कर लें और अपनी परीक्षा की तैयारी को और बेहतर बनाऐ।

## Trigonometry Formula Pdf

• Changes Between Angles
• Some Important Facts
• If (x+y) = 90*
• If (A+B+C) = 180*
• Maximum & Minimum Values
• Trigonometric Values

There are lots to learn in Trigonometry. And after your concept on Trigonometric Functions becomes clear, then you will be able to score good marks in this chapter. It becomes very easy for you after you understand its concept properly.

This is the normal table of trigonometric formulas, now you can also check out the other advanced formulas of Trigonometry.

## Trigonometry Functions

Below you can check the Reciprocal identities given and these are also most important part of trigonometric formulas.

• cosec θ = 1/sin θ
• sec θ = 1/cos θ
• cot θ = 1/tan θ
• sin θ = 1/cosec θ
• cos θ = 1/sec θ
• tan θ = 1/cot θ

Sum & Difference Identities

• sin(x+y) = sin(x)cos(y)+cos(x)sin(y)
• cos(x+y) = cos(x)cos(y)–sin(x)sin(y)
• tan(x+y) = (tan x + tan y)/ (1−tan x •tan y)
• sin(x–y) = sin(x)cos(y)–cos(x)sin(y)
• cos(x–y) = cos(x)cos(y) + sin(x)sin(y)
• tan(x−y) = (tan x–tan y)/ (1+tan x • tan y)

Double Angle Identities

• sin(2x) = 2sin(x) • cos(x) = [2tan x/(1+tan2 x)]
• cos(2x) = cos2(x)–sin2(x) = [(1-tan2 x)/(1+tan2 x)]
• cos(2x) = 2cos2(x)−1 = 1–2sin2(x)
• tan(2x) = [2tan(x)]/ [1−tan2(x)]
• sec (2x) = secx/(2-sec2 x)
• csc (2x) = (sec x. csc x)/2

Triple Angle Identities

• Sin 3x = 3sin x – 4sin3x
• Cos 3x = 4cos3x-3cos x
• Tan 3x = [3tanx-tan3x]/[1-3tan2x]

These formulas are used to shift the angles by π/2, π, 2π, etc. They are also called cofunction identities.

• sin (π/2 – A) = cos A & cos (π/2 – A) = sin A
• sin (π/2 + A) = cos A & cos (π/2 + A) = – sin A
• sin (3π/2 – A)  = – cos A & cos (3π/2 – A)  = – sin A
• sin (3π/2 + A) = – cos A & cos (3π/2 + A) = sin A
• sin (π – A) = sin A &  cos (π – A) = – cos A
• sin (π + A) = – sin A & cos (π + A) = – cos A
• sin (2π – A) = – sin A & cos (2π – A) = cos A
• sin (2π + A) = sin A & cos (2π + A) = cos A

Cofunction Identities (in Degrees)

The cofunction or periodic identities can also be represented in degrees as:

• sin(90°−x) = cos x
• cos(90°−x) = sin x
• tan(90°−x) = cot x
• cot(90°−x) = tan x
• sec(90°−x) = cos x
• Cosec(90°−x) = sec x 